\(\def\R{\mathbb{R}} \def\Rpe{\R^{*}_+} \def\N{\mathbb{N}} \def\Z{\mathbb{Z}} \def\Q{\mathbb{Q}} \def\K{\mathbb{K}} \def\B{\mathbb{B}} \def\C{\mathbb{C}} \def\U{\mathbb{U}} \let\leq=\leqslant \let\geq=\geqslant \let\ge=\geq \let\le=\leq \def\RR{{\mathcal R}} \def\vect#1{\overrightarrow{#1}} \def\fa#1{\forall #1 \quad} \def\ex#1{\exists #1 \quad} \def\crochetentierouvrant{\mathopen{[\![}} \def\crochetentierfermant{\mathclose{]\!]}} \newcommand{\Et}[1][et]{\qquad\mbox{#1}\qquad} % Dans les formules \newcommand{\Ou}{\Et[ou]} % en display \newcommand{\Avec}{\Et[avec]} % \newcommand{\et}[1][et]{\quad\mbox{#1}\quad} % Dans les formules \newcommand{\ou}{\et[ou]} % en display \newcommand{\avec}{\et[avec]} % \newcommand\res[1]{\fbox{#1}} \let\oldphi=\phi \renewcommand{\phi}{\varphi} \newcommand{\eps}{\varepsilon} \let\epsilon=\eps \newcommand{\fonction}[5][rcl] {\begin{array}[t]{#1} #2& \longrightarrow& #3\\ #4& \longmapsto& #5\end{array}} \newcommand{\matrice}[2]{\left(\begin{array}{#1}#2\\\end{array}\right)} \newcommand{\determ}[2]{\left|\begin{array}{#1}#2\\\end{array}\right|} \newcommand{\ds}{\displaystyle} \def\restr#1{_{|_{#1}}} \def\O{{\rm{O}}} \def\o{{\rm{o}}} \newcommand\usim[1]{\mathop{{\underset{#1}{\sim}}}} % avec l'argument en dessous \def\To_#1{\mathrel{\mathop{\longrightarrow}\limits_{#1}}} \def\diff{\textrm d} \newcommand{\motreserve}[2]{ \def#1{\mathop{\rm #2}\nolimits}} \def\card{\Card} \def\ch{\mathop{\rm ch}\nolimits} \def\sh{\mathop{\rm sh}\nolimits} \def\th{\mathop{\rm th}\nolimits} \def\tg{\mathop{\rm tan}\nolimits} \def\cotg{\mathop{\rm cotan}\nolimits} \let\cotan=\cotg \def\argch{\mathop{\rm argch}\nolimits} \def\argsh{\mathop{\rm argsh}\nolimits} \def\arcsin{\mathop{\rm arcsin}\nolimits} \def\arccos{\mathop{\rm arccos}\nolimits} \def\argth{\mathop{\rm argth}\nolimits} \def\arctg{\mathop{\rm arctan}\nolimits} \let\arctan=\arctg \def\Arg{\mathop{\rm Arg}\nolimits} \def\Id{\mathop{\rm Id}\nolimits} \def\Ker{\mathop{\rm Ker}\nolimits} \let\ker=\Ker \def\det{\mathop{\rm det}\nolimits} \def\Im{\mathop{\rm Im}\nolimits} \def\Re{\mathop{\rm Re}\nolimits} \def\rg{\mathop{\rm rg}\nolimits} \def\Tr{\mathop{\rm Tr}\nolimits} \let\tr=\Tr \def\Mat{\mathop{\rm Mat}\nolimits} \def\Diag{\mathop{\rm Diag}\nolimits} \def\Vect{\mathop{\rm Vect}\nolimits} \def\Card{\mathop{\rm card}\nolimits\,} \def\grad{\mathop{\vect{{\rm grad}}}\nolimits} \def\divergence{\mathop{\rm div}\nolimits} \def\rot{\mathop{\rm rot}\nolimits} \let\emptyset=\varnothing %%%%%%% ALGEBRE LINEAIRE %%%%%%%%% \def\lin{{\mathcal L}} \newcommand\Mn[1][n]{\mathcal{M}_{#1}} \def\GL{{\mathcal{GL}}} \def\GA{{\mathcal{GA}}} \newcommand\GLn[1][n]{\mathcal{GL}_{#1}} \def\SO{{\mathcal{SO}}} \newcommand\SOn[1][n]{\mathcal{S\mskip-0.3\thinmuskip O}_{#1}} \def\OO{{\mathcal O}} \newcommand\OOn[1][n]{\mathcal{O}_{#1}} \def\SL{{\mathcal{SL}}} \newcommand\SLn[1][n]{\mathcal{SL}_{#1}} \def\BL{{\mathcal{BL}}} \newcommand\Sn[1][n]{\mathcal{S}_{#1}} \newcommand\An[1][n]{\mathcal{A}_{#1}} \motreserve{\Hom}{Hom} \motreserve{\End}{End} \motreserve{\Aut}{Aut} \motreserve{\af}{Aff} \def\transpose#1{{\vphantom{#1}}^{t}\!{#1}} \motreserve{\Diag}{Diag} \motreserve{\Trig}{Trig} \motreserve{\Com}{Com} \motreserve{\codim}{codim} \let\com=\Com \motreserve{\sp}{sp} \let\Sp=\sp \motreserve{\car}{car} \let\Car=\car \motreserve\rang{rang} %%% EVN, EUCLIDIENS %%%%%% \def\norme#1{\mathopen\|#1\mathclose\|} \def\Norme#1{\bigl\|#1\bigr\|} \def\NORME#1{\left\|#1\right\|} \def\troisbarres{|\!|\!|} \def\Troisbarres{\big|\!\big|\!\big|} \def\TROISBARRESL{\left|\!\left|\!\left|} \def\TROISBARRESR{\right|\!\right|\!\right|} \def\normeop#1{\mathopen{\troisbarres}#1\mathclose{\troisbarres}} \def\Normeop#1{\mathopen{\Troisbarres}#1\mathclose{\Troisbarres}} \def\NORMEOP#1{\TROISBARRESL#1\TROISBARRESR} \def\va#1{\mathopen|#1\mathclose|} \def\Va#1{\bigl|#1\bigr|} \def\VA#1{\left|#1\right|} \def\angle#1{\widehat{(#1)}} \motreserve{\Diam}{Diam} \motreserve{\Is}{Is} \motreserve{\Det}{Det} \def\ps#1#2{\mathopen{\mbox{(}}\,#1\mathrel{|}#2\,\mathclose{\mbox{)}}} \def\Ps#1#2{\bigl(#1\bigm|#2\,\bigr)} \def\PS#1#2{% \left(\,#1\vphantom{#2}\,\right|\left.\vphantom{#1}#2\,\right)} %%%%%%% ENSEMBLES DE FONCTIONS %%%%%%%%% \def\FF{{\mathcal F}} % ensemble des fonctions \def\CC{{\mathcal C}} % fonctions continues ou de classe C^k \newcommand\CM[1][]{{\mathcal C}^{#1}\!{\mathcal M}} % fonctions continues ou de classe C^k par morceaux \def\LL{{\mathcal L}} % fonctions intégrables \def\PP{{\mathcal P}} \def\tq{\mid} \def\Tq{\bigm|} \def\tq{\mid} \def\Tq{\bigm|} \def\pour{\,;\;} %\def\un{\mathbb{1}} \def\un{{1\kern -.23em \text{l}}} %%% Problème avec \max ET \min qui donnent old... \def\max{\mathop{\rm max}\nolimits} \def\min{\mathop{\rm min}\nolimits} %%%%%%% DERIVEES PARTIELLES %%%%%%%%% \newcommand\derp[2][x_j]{\frac{\partial #2}{\partial #1}} %%%%%%% INTERVALLE ENTIERS %%%%%%%%% \let\ceo=\crochetentierouvrant \let\cef=\crochetentierfermant \def\vi{\vec\imath} \def\vj{\vec\jmath} \def\vk{\vec k} %%% EVN, EUCLIDIENS %%%%%% \let\ch=\cosh \let\sh=\sinh \let\th=\tanh \def\argcosh{\mathop{\rm argcosh}\nolimits} \def\argsinh{\mathop{\rm argsinh}\nolimits} \def\argtanh{\mathop{\rm argtanh}\nolimits} \def\d{\mathinner{\rm d}\mathclose{}} %%%%%%% PROBABILITES %%%%%%%%% \def\Prob{{\mathbb P}} \def\Esp{{\mathbb E}} \def\Var{{\mathbb V}} \newcommand{\Cov}{\textrm{Cov}} \newcommand{\cov}{\textrm{Cov}} %%% Pour mettre les limites (et autres) en dessous sans utiliser \limits \let\oldbigcup=\bigcup \def\bigcup{\oldbigcup\limits} %\let\oldlim=\lim %\def\lim{\oldlim\limits} \let\oldbigcap=\bigcap \def\bigcap{\oldbigcap\limits} \let\oldsum=\sum \def\sum{\oldsum\limits} \let\oldprod=\prod \def\prod{\oldprod\limits} \let\oldcoprod=\coprod \def\coprod{\oldcoprod\limits} %\let\oldsup=\sup %\def\sup{\oldsup\limits} %\let\oldinf=\inf %\def\inf{\oldinf\limits} \let\oldlimsup=\limsup \def\limsup{\oldlimsup\limits} \let\oldliminf=\liminf \def\liminf{\oldliminf\limits} \let\oldmax=\max \def\max{\oldmax\limits} \let\oldmin=\min \def\min{\oldmin\limits} \let\oldbigotimes=\bigotimes \def\bigotimes{\oldbigotimes\limits} \let\oldbigoplus=\bigoplus \def\bigoplus{\oldbigoplus\limits} \let\oldbigsqcup=\bigsqcup \def\bigsqcap{\oldbigsqcap\limits} \let\oldbigsqcap=\bigsqcap \def\bigsqcap{\oldbigsqcap\limits} \let\oldint=\int \def\int{\displaystyle\oldint} \)
\( \def\epo{\mathop{\mathrel{=}\o}\nolimits} \def\egO{\mathop{\mathrel{=}\O}\nolimits} \def\fa#1{\forall #1 \quad} \def\ex#1{\exists #1 \quad} \def\DD{{\mathcal{D}}} \def\CC{{\mathcal{C}}} \def\limsim{\mathop{\mathrel{{}\sim{}}}\limits} \def\Rpe{\R^{*}_+} \def\XZeroInR{x_0\in\R} \def\NSuEgDeux{n\geq 2} \)
Primitives
  1. Ensemble des primitives d'une fonction
  2. Primitives usuelles
    1. Fonctions puissances
    2. Fonctions exponentielle et logarithme
    3. Fonctions trigonométriques
    4. Fonctions hyperboliques
    5. Autres primitives à connaître
  3. Calcul des primitives
    1. Deux réflexes importants
    2. Primitive de $ x\mapsto \frac{1}{a\,x^2+b\,x+c}\cdot$
    3. Relations entre primitive et intégrale
    4. Fonctions de classe $\CC^1$
    5. Intégration par parties
    6. Changement de variable

Calcul des primitives


Dans toute ce chapitre,
  1. Primitives d'une fonction
    1. Définition d'une primitive
    2. Ensemble des primitives d'une fonction
  2. Primitives usuelles
    Pour les inconditionnels, voir le tableau des primitives usuelles.
    Mais, si les primitives usuelles doivent pouvoir être utilisées sans hésitation, il serait absurde de les apprendre bêtement par coeur : il ne s'agit que d'une lecture inversée des résultats concernant la dérivation. Voir éventuellement ci-dessous quelques explications.
    1. Fonctions puissances
    2. Fonctions exponentielle et logarithme
    3. Fonctions trigonométriques
    4. Fonctions hyperboliques
    5. Autres primitives à connaître
  3. Calcul des primitives
    1. Deux réflexes importants
    2. Primitive de $ x\mapsto \frac{1}{a\,x^2+b\,x+c}\cdot$
    3. Relations entre primitive et intégrale
    4. Fonctions de classe $\CC^1$
    5. Intégration par parties
    6. Changement de variable